definite-integral

Question: $\int_{0}^{\pi /2}{{{\sin }^{2m}}x\,dx=}$



1) $\frac{2\,\,m\,\,!}{{{({{2}^{m}}.\,m\,\,!)}^{2}}}.\frac{\pi }{2}$
2) $\frac{(2m)\,\,!}{{{({{2}^{m}}.\,m\,\,!)}^{2}}}.\frac{\pi }{2}$
3) $\frac{2m\,\,!}{{{2}^{m}}.\,{{(m\,\,!)}^{2}}}.\frac{\pi }{2}$
4) None of these
Solution: Explanation: No Explanation
Summation of series by definite Integration

Rate this question:

Average rating: (0 votes)

Previous Question Next Question