Questions in definite-integral

SelectQuestion
$\int_{0}^{1}{{{e}^{2\,\text{In}\,x}}\,dx}=$
$\int_{0}^{\pi /4}{{{\tan }^{2}}x\,dx=}$
$\int_{0}^{\pi /2}{\frac{x+\sin x}{1+\cos x}\,dx=}$
$\int_{0}^{\pi /2}{{{e}^{x}}\sin x\,dx=}$
$\int_{1}^{2}{{{e}^{x}}\left( \frac{1}{x}-\frac{1}{{{x}^{2}}} \right)\,dx=}$
$\int_{0}^{\pi /2}{\frac{\cos x}{(1+\sin x)(2+\sin x)}}\,dx=$
$\int_{\pi /3}^{\pi /2}{\frac{\sqrt{1+\cos x}}{{{(1-\cos x)}^{\frac{5}{2}}}}}\,dx=$
$\int_{1}^{2}{\frac{1}{{{x}^{2}}}{{e}^{\frac{-1}{x}}}\,dx=}$
$\int_{0}^{1}{{{\sin }^{-1}}\left( \frac{2x}{1+{{x}^{2}}} \right)\,dx=}$
$\int_{1}^{e}{\frac{{{e}^{x}}}{x}(1+x\log x)\,dx}=$

View Selected Questions (0)

Back to Categories

Back to Home