Questions in differentiation

SelectQuestion
$\frac{d}{{dx}}\sqrt {\frac{{1 + \cos 2x}}{{1 - \cos 2x}}} = $
$\frac{d}{{dx}}\log \tan \left( {\frac{\pi }{4} + \frac{x}{2}} \right) = $
$\frac{d}{{dx}}\log (\sqrt {x - a} + \sqrt {x - b} ) = $
$\frac{d}{{dx}}{\tan ^{ - 1}}(\sec x + \tan x) = $
$\frac{d}{{dx}}{\cos ^{ - 1}}\sqrt {\cos x} = $
$\frac{d}{{dx}}({e^x}\log \sin 2x) = $
$\frac{d}{{dx}}{\tan ^{ - 1}}\frac{{4\sqrt x }}{{1 - 4x}} = $
If $y = \sin [\cos (\sin x)],$then $dy/dx = $
If $y = {\sec ^{ - 1}}\left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right) + {\sin ^{ - 1}}\left( {\frac{{\sqrt x - 1}}{{\sqrt x + 1}}} \right)$, then $\frac{{dy}}{{dx}} = $
$\frac{d}{{dx}}{\sin ^{ - 1}}(3x - 4{x^3}) = $

View Selected Questions (0)

Back to Categories

Back to Home