indefinite-integration

Question: $\int_{{}}^{{}}{\frac{\sin 2x}{\sin 5x\sin 3x}}\ dx=$



1) $\log \sin 3x-\log \sin 5x+c$
2) $\frac{1}{3}\log \sin 3x+\frac{1}{5}\log \sin 5x+c$
3) $\frac{1}{3}\log \sin 3x-\frac{1}{5}\log \sin 5x+c$
4) $3\log \sin 3x-5\log \sin 5x+c$
Solution: Explanation: No Explanation
Integration by substitution

Rate this question:

Average rating: (0 votes)

Previous Question Next Question