indefinite-integration

Question: $\int_{{}}^{{}}{\sqrt{{{x}^{2}}-8x+7}}\ dx=$



1) $\frac{1}{2}(x-4)\sqrt{{{x}^{2}}-8x+7}+9\log [x-4+\sqrt{{{x}^{2}}-8x+7}]+c$
2) $\frac{1}{2}(x-4)\sqrt{{{x}^{2}}-8x+7}-3\sqrt{2}\log [x-4+\sqrt{{{x}^{2}}-8x+7}]+c$
3) $\frac{1}{2}(x-4)\sqrt{{{x}^{2}}-8x+7}-\frac{9}{2}\log [x-4+\sqrt{{{x}^{2}}-8x+7}]+c$
4) None of these
Solution: Explanation: No Explanation
Integration of rational functions by using partial fractions Evaluation of various forms of integration

Rate this question:

Average rating: (0 votes)

Previous Question Next Question