Questions in inv-trig

SelectQuestion
${{\sin }^{-1}}\frac{1}{\sqrt{5}}+{{\cot }^{-1}}3$is equal to
If ${{\cot }^{-1}}\alpha +{{\cot }^{-1}}\beta ={{\cot }^{-1}}x,$then $x=$
If ${{\sin }^{-1}}\left( \frac{2a}{1+{{a}^{2}}} \right)+{{\sin }^{-1}}\left( \frac{2b}{1+{{b}^{2}}} \right)=2{{\tan }^{-1}}x,$then $x=$
${{\cos }^{-1}}\frac{1}{2}+2{{\sin }^{-1}}\frac{1}{2}$is equal to
${{\tan }^{-1}}\frac{3}{4}+{{\tan }^{-1}}\frac{3}{5}-{{\tan }^{-1}}\frac{8}{19}=$
$4{{\tan }^{-1}}\frac{1}{5}-{{\tan }^{-1}}\frac{1}{70}+{{\tan }^{-1}}\frac{1}{99}=$
If ${{\sin }^{-1}}x+{{\sin }^{-1}}y=\frac{2\pi }{3},$then ${{\cos }^{-1}}x+{{\cos }^{-1}}y=$
${{\tan }^{-1}}\left( \frac{1}{4} \right)+{{\tan }^{-1}}\left( \frac{2}{9} \right)=$
${{\tan }^{-1}}\left( \frac{x}{y} \right)-{{\tan }^{-1}}\,\left( \frac{x-y}{x+y} \right)$ is
If ${{\sin }^{-1}}\frac{x}{5}+\text{cose}{{\text{c}}^{-1}}\left( \frac{5}{4} \right)=\frac{\pi }{2},$then $x=$

View Selected Questions (0)

Back to Categories

Back to Home