Questions in differentiation

SelectQuestion
$\frac{d}{{dx}}\left( {{{\tan }^{ - 1}}\frac{{\cos x}}{{1 + \sin x}}} \right) = $
$\frac{d}{{dx}}[\cos {(1 - {x^2})^2}]$=
$\frac{d}{{dx}}\left( {{x^2}\sin \frac{1}{x}} \right) = $
If $y = \cos (\sin {x^2}),$then at $x = \sqrt {\frac{\pi }{2}} ,\frac{{dy}}{{dx}}$=
If $y = {\sin ^{ - 1}}(x\sqrt {1 - x} + \sqrt x \sqrt {1 - {x^2})} ,$then $\frac{{dy}}{{dx}} = $
$\frac{d}{{dx}}\log |x|{\rm{ }} = ......,(x \ne 0)$
If $y = a\sin x + b\cos x,$then ${y^2} + {\left( {\frac{{dy}}{{dx}}} \right)^2}$ is a
$f(x) = {x^2} - 3x$, then the points at which $f(x) = f'(x)$ are
If $f(x) = mx + c,f(0) = f'(0) = 1$then $f(2) = $
If $y = 3{x^5} + 4{x^4} + 2x + 3$, then

View Selected Questions (0)

Back to Categories

Back to Home