diff-equation

Question: The solution of the differential equation $(1-{{x}^{2}})(1-y)dx=xy(1+y)dy$ is



1) $\log [x\,{{(1-y)}^{2}}]=\frac{{{x}^{2}}}{2}+\frac{{{y}^{2}}}{2}-2y+c$
2) $\log [x{{(1-y)}^{2}}]=\frac{{{x}^{2}}}{2}-\frac{{{y}^{2}}}{2}+2y+c$
3) $\log [x{{(1+y)}^{2}}]=\frac{{{x}^{2}}}{2}+\frac{{{y}^{2}}}{2}+2y+c$
4) $\log [x{{(1-y)}^{2}}]=\frac{{{x}^{2}}}{2}-\frac{{{y}^{2}}}{2}-2y+c$
Solution: Explanation: No Explanation
Variable separable type differential equations

Rate this question:

Average rating: (0 votes)

Previous Question Next Question