vectors-m

Question: If a, b, c are coplanar vectors, then



1) $\begin{vmatrix} {\bf{a}}&{\bf{b}}&{\bf{c}}\\ {\bf{b}}&{\bf{c}}&{\bf{a}}\\ {\bf{c}}&{\bf{a}}&{\bf{b}} \end{vmatrix} = {\bf{0}}$
2) $\begin{vmatrix} {\bf{a}}&{\bf{b}}&{\bf{c}}\\ {{\bf{a}}\,.\,{\bf{a}}}&{{\bf{a}}\,.\,{\bf{b}}}&{{\bf{a}}\,.\,{\bf{c}}}\\ {{\bf{b}}\,.\,{\bf{a}}}&{{\bf{b}}\,.\,{\bf{b}}}&{{\bf{b}}\,.\,{\bf{c}}} \end{vmatrix} = {\bf{0}}$
3) $\begin{vmatrix} {\bf{a}}&{\bf{b}}&{\bf{c}}\\ {{\bf{c}}\,.\,{\bf{a}}}&{{\bf{c}}\,.\,{\bf{b}}}&{{\bf{c}}\,.\,{\bf{c}}}\\ {{\bf{b}}\,.\,{\bf{a}}}&{{\bf{b}}\,.\,{\bf{c}}}&{{\bf{b}}\,.\,{\bf{b}}} \end{vmatrix}= {\bf{0}}$
4) $\begin{vmatrix} {\bf{a}}&{\bf{b}}&{\bf{c}}\\ {{\bf{a}}\,.\,{\bf{b}}}&{{\bf{a}}\,.\,{\bf{a}}}&{{\bf{a}}\,.\,{\bf{c}}}\\ {{\bf{c}}\,.\,{\bf{a}}}&{{\bf{c}}\,.\,{\bf{c}}}&{{\bf{c}}\,.\,{\bf{b}}} \end{vmatrix} = {\bf{0}}$
Solution: Explanation: No Explanation
Scalar Product Dot Product

Rate this question:

Average rating: (0 votes)

Previous Question Next Question