vectors-m

Question: If $\overrightarrow{{{F}_{1}}}=\mathbf{i}-\mathbf{j}+\mathbf{k},$ $\overrightarrow{{{F}_{2}}}=-\mathbf{i}+2\mathbf{j}-\mathbf{k},$ $\overrightarrow{{{F}_{3}}}=\mathbf{j}-\mathbf{k},$ $\vec{A}=4\mathbf{i}-3\mathbf{j}-2\mathbf{k}$ and $\vec{B}=6\mathbf{i}+\mathbf{j}-3\mathbf{k},$ then the scalar product of $\overrightarrow{{{F}_{1}}}+\overrightarrow{{{F}_{2}}}+\overrightarrow{{{F}_{3}}}$and $\overrightarrow{AB}$ will be



1) 3
2) 6
3) 9
4) 12
Solution: Explanation: No Explanation
Scalar Product Dot Product

Rate this question:

Average rating: (0 votes)

Previous Question Next Question