conic-section

Question: If the line $x\cos \alpha +y\sin \alpha =p$ be normal to the ellipse $\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1$ , then



1) ${{p}^{2}}({{a}^{2}}{{\cos }^{2}}\alpha +{{b}^{2}}{{\sin }^{2}}\alpha )={{a}^{2}}-{{b}^{2}}$
2) ${{p}^{2}}({{a}^{2}}{{\cos }^{2}}\alpha +{{b}^{2}}{{\sin }^{2}}\alpha )={{({{a}^{2}}-{{b}^{2}})}^{2}}$
3) ${{p}^{2}}({{a}^{2}}{{\sec }^{2}}\alpha +{{b}^{2}}\text{cose}{{\text{c}}^{2}}\alpha )={{a}^{2}}-{{b}^{2}}$
4) ${{p}^{2}}({{a}^{2}}{{\sec }^{2}}\alpha +{{b}^{2}}\text{cose}{{\text{c}}^{2}}\alpha )={{({{a}^{2}}-{{b}^{2}})}^{2}}$
Solution: Explanation: No Explanation
Ellipse

Rate this question:

Average rating: (0 votes)

Previous Question Next Question