circle

Question: The equation of a circle touching the axes of coordinates and the line $x\cos \alpha +y\sin \alpha =2$ can be



1) ${{x}^{2}}+{{y}^{2}}-2gx-2gy+{{g}^{2}}=0$, where $g=\frac{2}{(\cos \alpha +\sin \alpha +1)}$
2) ${{x}^{2}}+{{y}^{2}}-2gx-2gy+{{g}^{2}}=0$, where $g=\frac{2}{(\cos \alpha +\sin \alpha -1)}$
3) ${{x}^{2}}+{{y}^{2}}-2gx+2gy+{{g}^{2}}=0$, where $g=\frac{2}{(\cos \alpha -\sin \alpha +1)}$
4) All of these
Solution: Explanation: No Explanation
Equations of circle Geometrical problems regarding circle

Rate this question:

Average rating: (0 votes)

Previous Question Next Question