st-line

Question: If the given lines $y={{m}_{1}}x+{{c}_{1}},y={{m}_{2}}x+{{c}_{2}}$ and $y={{m}_{3}}x+{{c}_{3}}$ be concurrent, then



1) ${{m}_{1}}({{c}_{2}}-{{c}_{3}})+{{m}_{2}}({{c}_{3}}-{{c}_{1}})+{{m}_{3}}({{c}_{1}}-{{c}_{2}})=0$
2) ${{m}_{1}}({{c}_{2}}-{{c}_{1}})+{{m}_{2}}({{c}_{3}}-{{c}_{2}})+{{m}_{3}}({{c}_{1}}-{{c}_{3}})=0$
3) ${{c}_{1}}({{m}_{2}}-{{m}_{3}})+{{c}_{2}}({{m}_{3}}-{{m}_{1}})+{{c}_{3}}({{m}_{1}}-{{m}_{2}})=0$
4) None of these
Solution: Explanation: No Explanation
Concurrency of three lines

Rate this question:

Average rating: (0 votes)

Previous Question Next Question