trigonometry

Question: If $\sin \beta $is the geometric mean between $\sin \alpha $and $\cos \alpha ,$then $\cos 2\beta $is equal to



1) $2{{\sin }^{2}}\left( \frac{\pi }{4}-\alpha \right)$
2) $2{{\cos }^{2}}\left( \frac{\pi }{4}-\alpha \right)$
3) $2{{\cos }^{2}}\left( \frac{\pi }{4}+\alpha \right)$
4) $2{{\sin }^{2}}\left( \frac{\pi }{4}+\alpha \right)$
Solution: Explanation: No Solution
Trigonometric ratios of multiple and sub-multiple angles

Rate this question:

Average rating: (0 votes)

Previous Question Next Question