vectors

Question: If $\overrightarrow A = 2\hat i + 4\hat j - 5\hat k$ the direction of cosines of the vector $\overrightarrow A $ are



1) $\frac{2}{{\sqrt {45} }},\frac{4}{{\sqrt {45} }}\,{\rm{and}}\,\frac{{ - \,{\rm{5}}}}{{\sqrt {{\rm{45}}} }}$
2) $\frac{1}{{\sqrt {45} }},\frac{2}{{\sqrt {45} }}\,{\rm{and}}\,\frac{{\rm{3}}}{{\sqrt {{\rm{45}}} }}$
3) $\frac{4}{{\sqrt {45} }},\,0\,{\rm{and}}\,\frac{{\rm{4}}}{{\sqrt {45} }}$
4) $\frac{3}{{\sqrt {45} }},\frac{2}{{\sqrt {45} }}\,{\rm{and}}\,\frac{{\rm{5}}}{{\sqrt {{\rm{45}}} }}$
Solution: Explanation: Explanation
fundamental-of-vectors

Rate this question:

Average rating: (0 votes)

Previous Question Next Question