Questions in trigonometry

SelectQuestion
$\sin 15{}^\circ +\cos 105{}^\circ =$
The value $\cos 105{}^\circ +\sin 105{}^\circ $is
The value of $\cos y\cos \left( \frac{\pi }{2}-x \right)-\cos \left( \frac{\pi }{2}-y \right)\cos x$ $+\sin y\cos \left( \frac{\pi }{2}-x \right)+\cos x\sin \left( \frac{\pi }{2}-y \right)$ is zero, if
$\sin \left( \frac{\pi }{10} \right)\sin \left( \frac{3\pi }{10} \right)=$
If $x\sin 45{}^\circ {{\cos }^{2}}60{}^\circ =\frac{{{\tan }^{2}}60{}^\circ \text{cosec}30{}^\circ }{\sec 45{}^\circ {{\cot }^{2}}30{}^\circ },$ then $x=$
If $A=130{}^\circ $and $x=\sin A+\cos A,$then
$\cos A+\sin (270{}^\circ +A)-\sin (270{}^\circ -A)+\cos (180{}^\circ +A)=$
If $\pi <\alpha <\frac{3\pi }{2}$, then $\sqrt{\frac{1-\cos \alpha }{1+\cos \alpha }}+\sqrt{\frac{1+\cos \alpha }{1-\cos \alpha }}$=
$\tan \left( \frac{\pi }{4}+\theta \right)-\tan \left( \frac{\pi }{4}-\theta \right)=$
$\sin (\pi +\theta )\sin (\pi -\theta )\,\text{ cose}{{\text{c}}^{2}}\theta =$

View Selected Questions (0)

Back to Categories

Back to Home