Questions in trigonometry

SelectQuestion
If $\tan \theta =\frac{-4}{3},$then$\sin \theta =$
If $\sin \theta =-\frac{1}{\sqrt{2}}$ and $\tan \theta =1,$ then $\theta $ lies in which quadrant
If $\sin \theta =\frac{-4}{5}$ and $\theta $ lies in the third quadrant, then $\cos \frac{\theta }{2}=$
If $\sin (\alpha -\beta )=\frac{1}{2}$and $\cos (\alpha +\beta )=\frac{1}{2},$where $\alpha $ and $\beta $ are positive acute angles, then
If $\tan \theta =-\frac{1}{\sqrt{10}}$and $\theta $ lies in the fourth quadrant, then $\cos \theta =$
$(m+2)\sin \theta +(2m-1)\cos \theta =2m+1,$if
If $A$ lies in the second quadrant and $3\tan A+4=0,$ the value of $2\cot A-5\cos A+\sin A$is equal to
If $\sin x+\sin y=3(\cos y-\cos x),$ then the value of $\frac{\sin 3x}{\sin 3y}$ is
If $\sin A,\cos A$ and $\tan A$ are in G.P., then ${{\cos }^{3}}A+{{\cos }^{2}}A$ is equal to
If $\theta $ lies in the second quadrant, then the value of $\sqrt{\left( \frac{1-\sin \theta }{1+\sin \theta } \right)}+\sqrt{\left( \frac{1+\sin \theta }{1-\sin \theta } \right)}$

View Selected Questions (0)

Back to Categories

Back to Home