Questions in st-line

SelectQuestion
A line passes through the point (3, 4) and cuts off intercepts from the coordinates axes such that their sum is 14. The equation of the line is
The equation of the line bisecting the line segment joining the points (a, b) and $({a}',\ {b}')$ at right angle, is
The equations of the lines which pass through the origin and are inclined at an angle ${{\tan }^{-1}}m$ to the line $y=mx+c,$ are
A line meets x–axis and y-axis at the points A and B respectively. If the middle point of AB be $({{x}_{1}},\ {{y}_{1}}),$ then the equation of the line is
The equation of the line parallel to the line $2x-3y=1$ and passing through the middle point of the line segment joining the points (1, 3) and (1, – 7), is
The equation of the lines which passes through the point (3, – 2) and are inclined at ${{60}^{o}}$ to the line$\sqrt{3}x+y=1$
The equations of the lines passing through the point (1, 0) and at a distance $\frac{\sqrt{3}}{2}$ from the origin, are
The equation of a straight line passing through $x+2y=2$ and cutting an intercept equal in magnitude but opposite in sign from the axes is given by
The equation of a line passing through the point of intersection of the lines $x+5y+7=0,\ \ 3x+2y-5=0,$ and perpendicular to the line $7x+2y-5=0,$ is given by
A line passes through the point of intersection of $2x+y=5$ and $x+3y+8=0$ and parallel to the line $3x+4y=7$ is

View Selected Questions (0)

Back to Categories

Back to Home