Questions in indefinite-integration

SelectQuestion
$\int_{{}}^{{}}{\frac{dx}{1-\sin x}}=$
If $\int_{{}}^{{}}{(\sin 2x-\cos 2x)}\ dx=\frac{1}{\sqrt{2}}\sin (2x-a)+b$, then
$\int_{{}}^{{}}{\left( 1+x+\frac{{{x}^{2}}}{2\ !}+\frac{{{x}^{3}}}{3\ !}+.......... \right)\ dx=}$
$\int_{{}}^{{}}{\frac{\cot x\tan x}{{{\sec }^{2}}x-1}}\ dx=$
$\int_{{}}^{{}}{{{(\sec x+\tan x)}^{2}}dx=}$
$\int_{{}}^{{}}{{{x}^{51}}({{\tan }^{-1}}x+{{\cot }^{-1}}x)\ dx=}$
$\int_{{}}^{{}}{5\sin xdx=}$
$\int_{{}}^{{}}{\frac{\tan x}{\sec x+\tan x}\ dx=}$
$\int_{{}}^{{}}{\frac{dx}{{{\sin }^{2}}x{{\cos }^{2}}x}=}$
$\int_{{}}^{{}}{{{\left( x+\frac{1}{x} \right)}^{3}}}dx=$

View Selected Questions (0)

Back to Categories

Back to Home