Questions in fun-lim

SelectQuestion
The function $f:R\to R$ defined by $f(x)={{e}^{x}}$ is
Which one of the following is a bijective function on the set of real numbers
Let $f(x)=\frac{{{x}^{2}}-4}{{{x}^{2}}+4}$ for $|x|\ >2$, then the function $f:(-\infty ,\ -2]\cup [2,\ \infty )\to (-1,\ 1)$ is
Let the function $f:R\to R$ be defined by $f(x)=2x+\sin x,\ x\in R$. Then f is
A function f from the set of natural numbers to integers defined by $f(n) = \begin{cases} \frac{{n - 1}}{2},\text{when n is odd}\\ - \frac{n}{2},\text{when n is even} \end{cases}$, is
If $f:[0,\ \infty )\to [0,\ \infty )$ and $f(x)=\frac{x}{1+x},$then f is
If $f:R\to S$ defined by $f(x)=\sin x-\sqrt{3}\cos x+1$is onto, then the interval of S is
If R denotes the set of all real numbers then the function $f:R\to R$ defined $f(x)=\ [x] $
$f(x)=x+\sqrt{{{x}^{2}}}$ is a function from R$\to $R , then $f(x)$ is
If $(x,\,y)\in R$ and $x,\ y\ne 0$; $f(x,\ y)\to \frac{x}{y}$, then this function is a/an

View Selected Questions (0)

Back to Categories

Back to Home